Session 17: 4GDH concepts, future DH production and systems

Sabine Jansen¹,
Saleh Mohammadi¹, Marcel Elswijk², Herman Eijdems³

¹TU Delft, Faculty of Architecture and the Built Environment

²EnergyGO ³MijnWater BV

Designing smart low temperature heat grids based on spatial allocation of demands and sources

- Dutch Funded Research Project 'KoWaNet': Koele WarmteNetten'.
- Partners:

Alternative heating solutions for the built environment

Temperature levels

a	b	le	1	

	1st Generation	2nd Generation	3rd Generation	4th Generation
Label	Steam	In situ	Prefabricated	4GDH
Period of best available technology	1880-1930	1930-1980	1980-2020	2020–2050
Heat carrier	Steam	Pressurised hot water mostly over 100 °C	Pressurised hot water often below 100 °C	Low-temperature water 30-70 °C
Pipes	In situ insulated steel pipes	In situ insulated steel pipes	Pre-insulated steel pipes	Pre-insulated flexible (possible twin) pipes

[Lund et al, 2014, 4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems]

Hot > 90°
Cold ~ 70°
Traditional
district
heating

Hot > 70°
Cold ~ 40°
High Temperature
(direct supply of hot water)

Hot = 45-70°
Cold ~ 30- 40°
Medium Temperature
(additional solution
for hot water)

Warm = 30-45°
Cold = 18-30°
Low Temperature
(direct space heating
Booster HP for DHW)

Warm = 10-30°
Cold = 5-18°
Ultra low Temperature
(heat pump for space
heating and DHW)

Approach for matching sources and demands

Aim:

to develop a conceptual configuration for a local, low temperature district heating system for a given neighbourhood, based on local sources and demands

Steps

- 1. Quantify sources and supply
 - Energy (GJ)
 - Power (MW)
 - Temperature (°C)
- 2. Map these on a spatial scheme (building > city)
- 3. Develop potential configurations
- 4. Estimate rough performance Energy, costs, governance

Step 1a: Quantify thermal demands

Step 1b: Quantify thermal potentials

1. Solar thermal energy:

Solar Collectors & PVT (PV + thermal)

- with low temperature output
- with high temperature

2. Thermal potential of water

- Waste water
- Surface water
- **Energy from waste & biomass**
- Other (waste heat, etc)
- 5. Storage potentials

City		Neighbourhood	Urban block	Building/street	Unit
	°C				
	75				
	70				
	65				
	60				
	55				
	50				
	45				
	40				
	35				
	30				
	25				
	20				
	15				
	10				
	5				

Case 1: Ramplaankwartier

- Haarlem, NL
- 1127 single family houses
- 47 small enterprises
- Poor energy labels (built in '30s and '50s)

Case 1: demands and potential supply

	ULT heat grid with individual HP		LT/MT heat grid with booster HP)		HT heat grid
renovation scenario	label C/D	label B	label C/D	label B	label C/D
Net heat demand of buildings (GWh/yr)	14,6	11,9	14,6	11,9	14,6
Building level boiler losses (GWh/yr)	0,6	0,6	0,6	0,6	
Distribution losses (GWh/yr)			0,6	0,6	2,8
Total electricity needed for heating (GWh/yr)	4,1	3,2	3,5	2,8	5,5

- LT/MT grid seems the most energy efficient, but:
 - » Not certain how many hours time the grid temperature (ca 40 degrees) is sufficiently high for space heating
 - » We have difficulty supplying enough heat at this temperature > too much solar (PVT) collectors needed.
- Also, booster HP performance is not sufficiently better than normal HT
- → ULT grid was selected for further development

Following case study 1: New system now under development Low Temperature Solar feed-in heat grid (deZONNET) See session 25, Wednesday morning

maximaal lokaal duurzame wijk-warmtevoorziening, TU Delft, Smart Urban Isle Project, 2017

Case 2: Strandeiland

- Amsterdam, NL
- New development area
- 8000 new dwellings
- 150.000 m² non-residential

STRANDEILAND	ULT heat grid with	LT/MT heat grid with	HT heat grid	
with 8000 dwellings (NZEB) + 150.000 m ² other	individual HP	booster HP)	coll. HP	external heat
renovation scenario	NZEB	20	label C/D	label C/D
Net heat demand of buildings (GWh/yr)	25	25	25	25
Building level boiler losses (GWh)	incl	incl		
Distribution losses (GWh/yr)		2	10	10
Total electricity needed for heating (GWh/yr)	9	8,9	11,5	
District heating supply (GWh/yr)				35

- ULT & LT grids result in similar electricity needs:
 - Higher efficiency of collective heat pump versus more distribution losses
 - For this case, collective HP was selected since results in lower installed power > lower costs. Also
 - Different concepts on building level can be
- Also, booster HP performance is not sufficiently better than normal HT
- \(\rightarrow\) ULT grid was selected for further development

Conclusions:

- Choice of temperature level depends on:
 - Required temperature of the space heating demand & available sources
 - Distribution losses versus storage losses
 - Actual heat pump performance for a given situation
 - » Often a large collective heat pump is more efficient
 - » Ramplaan case: Booster heat pumps do no perform sufficiently better than 'onvensional' heat pumps > too little gain in case high temp space heating is needed
- Energy performance of ULT (~20°C) and LT (~40°) seems similar; preferred option depends on available sources and where these are located, plus costs and spatial needs for energy systems.
- The spatial representation of the sources helps to identify options and simplify the comparison based on rough energy performance indicators
- Tool is still under development within the KoWaNet project.

Thank you

City	°C	Neighbourhood	Urban block	Building/street	Unit
Ī	75				
	70				
	65				
	60				
	55				
	50				
	45				
	40				
	35				
	30				
	25				
	20				
	15				
	10				
	5				

